Low Level Design 1 - Todo List

I recently came across the “machine coding” round, also called “low level design” round, of the tech interview process. In this round of the interview, you’re presented with a real-life problem statement, and are expected to create a functioning system in under 90 minutes. The intent is to see how you structure your code, follow best practices, apply design patterns, and so on. In the spirit of practising for this round, this blog post looks at how to create a simple todo list application in Python.

Problem Statement

Let’s start with the problem statement: create a todo list. The very first requirement that comes to mind when creating a todo list is the ability to add tasks to the list. For example, getting groceries. It’s also possible to add subtasks to the list. For example, getting apples and oranges are subtasks when getting groceries. The todo list may be shared with family and friends. They receive notifications when items are added or removed from the list, and have the ability to add or remove items. Only the one who created the list and the ones with whom the list has been shared may modify the list. The todo list may be displayed in the console or in the webpage. Finally, the todo list may be persisted in the database.

With these requirements in mind, we’ll begin by looking at the classes and methods that comprise our system, the design patterns we can apply, and finally go ahead and create the system. Please note that since the implementation is going to be in Python, it may seem like I’m trying to do Java in Python by creating too many classes. For example, Python has the concept of “factory function” rather than “factory method” since functions are first-class citizens of the language. You’ve been warned.

Design Patterns

Let’s begin with a quick refresher on design patterns. In a nutshell, design patterns allow us to write reusable, maintainable, and testable code by providing patterns for solving common software engineering problems. These patterns can be categorized into three types: behavioral, creational, and structural. Behavioral patterns describe how objects interact with each other. Creational patterns describe how objects can be created. Finally, structural patterns describe how objects can be composed to create larger systems.

In the context of the todo list, we’ll see the following patterns being used. We’ll take a quick look at these patterns and then map them onto the classes we’ll create.

Composite Pattern

Composite pattern allows us to represent hierarchical, tree-like, data structures. The intention of this pattern is to ensure that composite objects (the non-leaf nodes), and individual objects (the leaf nodes) are treated the same. The UML diagram is given below.

As we can see, the non-leaf Composite class is itself a Component and has a collection of Components. These may be Composites or Leafs. In our todo list example, we can model the the tasks and subtasks using this pattern. We begin by creating a top-level abstract class TodoItem which corresponds to top-level Component. The subtask can be represented by a SubTask class and is the Leaf. Finally, we’ll create a Task class which is the Composite.

Adapter Pattern

The adapter pattern allows disparate components to work together seamlessly by reconciling differences between interfaces. It does so by providing a familiar interface that the client can talk to, and in turn using the interface of the underlying component. In other words, adapter pattern translates from one interface to another; the adapter calls specific methods on the adaptee when it is invoked. The UML diagram is given below.

In our todo list example, we can model connection to database using a DatabaseAdapter. This allows us to expose a familiar set of methods to perform operations like saving the todo list to the database while abstracting the nitty-gritties of the actual database. This class can then be subclassed to provide functionality for specific databases. For example, a MySQLDatabaseAdapter for using MySQL as the database.

The advantage of using this approach is that it allows seamless migration between databases; we may start small with SQLiteDatabaseAdapter and then switch to MySQLDatabaseAdapter by simply changing which class we use. Since the interface exposed is the same, there will be minimal refactoring in the client code to make this transition.

Strategy Pattern

The strategy pattern allows defining a family of algorithms, encapsulating each one, and making them interchangeable. This means we can define and pass algorithms around. There is a base class Strategy that defines the interface for the algorithm, and one or more concretions that provide the actual implementation. The UML diagram is given below.

In our todo list example, we can design the rendering of the list as a strategy. For example, we can have a markdown strategy, an HTML strategy, etc. These different strategies produce different representations of the todo list.

Proxy Pattern

The proxy pattern encapsulates an object and allows itself to be used in place of the original object. Since the proxy is used in place of the original object, it enables use cases such as controlling access. There can be methods on the proxy which require authentication before the operation is performed on the original object.

In our todolist example, we can create a proxy which ensures that only the owner of the list and those with whom it is shared can make changes to it. To do this, we’ll create an interface called TodoListProtocol which defines methods which the todo list must implement. This will be used by the TodoList class, which represents the actual todo list, and by the TodoListProxy which provides access control for the todo list. The proxy will require that that when a method call is made, the user making the call also be passed as an argument. Only if the user is the owner of the list or is one of the collaborators will the operation be performed.

Observer Pattern

The observer pattern allows objects, the observers, to be notified when the state of another object, the observable, changes.

In our todolist example, we’ll create observers which get notified when the state of the todo list changes. We’ll create an abstract class called Observable which will be inherited by the TodoList class. This makes the class “observable”. We’ll create another class TodoListObserver which inherits the Observer class. This makes it the “observer” and it’ll be notified when changes happen to the todo list.

Now that we’ve looked at the design patterns we’ll use, let’s look at the code.

Code

User

We’ll begin with the simplest class first, the User class which represents a user of the system. The owners and collaborators of the list will be represented by this class.

1
2
3
@dc.dataclass(frozen=True)
class User:
email: str

Observer Pattern

Next, let’s add classes to create the observer pattern. We’ll begin by creating the abstract observable class. It’ll store the list of observers it has to notify, and require the subclasses to provide an implementation to return their state. Since the observers hold a reference to the observable they are observing, the method which returns the state will be used to find what’s changed.

The implementation for the Observable class is shown below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
@dc.dataclass(kw_only=True)
class Observable(abc.ABC):
observers: list["Observer"] = dc.field(default_factory=list)

def notify(self):
for observer in self.observers:
observer.update()

def add_observer(self, observer: "Observer"):
self.observers.append(observer)

@property
@abc.abstractmethod
def state(self) -> typing.Any: ...

Similarly, we’ll implement the Observer class. It requires its subclasses to provide an implementation for the update method which will be called by the Observable it’s observing.

1
2
3
4
5
6
@dc.dataclass(kw_only=True)
class Observer(abc.ABC):
observable: "Observable"

@abc.abstractmethod
def update(self): ...

Finally, we’ll create the concrete observer TodoListObserver. It notifies the user by sending them an email when the list is updated. For simplicity, however, we’ll just log a message to the console.

1
2
3
4
5
6
7
8
class TodoListObserver(Observer):

def __init__(self, user: "User"):
self.user = user

def update(self):
state = self.observable.state
print(f"Notify {self.user.email} about changed state")

Composite Pattern

Next we’ll create the composite pattern. We’ll create a base class TodoItem which will be inherited by both the Task and SubTask class. It has basic fields that are required to define a task like an ID, a title, etc. and a couple of base methods to mark the item as complete or check if it’s complete.

1
2
3
4
5
6
7
8
9
10
11
@dc.dataclass(kw_only=True)
class TodoItem(abc.ABC):
id: uuid.UUID = dc.field(default_factory=uuid.uuid4)
title: str
completed: bool = dc.field(default=False)

@abc.abstractmethod
def is_complete(self) -> bool: ...

@abc.abstractmethod
def complete(self) -> None: ...

The first of the subclasses is the Task class which we’ll implement next. A task is considered complete when it’s been marked completed and are all of its subtasks. Similarly, marking a task complete marks all the subtasks as complete.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
@dc.dataclass(kw_only=True)
class Task(TodoItem):
subtasks: list["SubTask"] = dc.field(default_factory=list)

def is_complete(self) -> bool:
return self.completed and all(subtask.completed for subtask in self.subtasks)

def complete(self):
self.completed = True

for subtask in self.subtasks:
subtask.complete()

assert self.is_complete() is True

To complete the composite, we’ll add the SubTask class.

1
2
3
4
5
6
7
8
@dc.dataclass(kw_only=True)
class SubTask(TodoItem):

def is_complete(self) -> bool:
return self.completed

def complete(self):
self.completed = True

If we look at the TodoItem, Task, SubTask classes, we can see the hierarchical structure where each Task, a non-leaf component, may have zero or more SubTasks, leaf components. Since both the Task and SubTask are instances of TodoItem, they have the same interface and can be used interchangeably.

Adapter Pattern

Next we’ll create a simple database adapter with a single method to save the todo list. There is only one method for the sake of simplicity but it’s easy to see how there can be more of these methods. We’ll start with a protocol called DatabaseAdapter. Think of a Python protocol to be similar to a Java interface.

1
2
3
class DatabaseAdapter(Protocol):

def save_list(self, todolist: "TodoList"): ...

Next we’ll create two concrete classes which implement this protocol. The first class creates an adapter for MySQL and another for SQLite. Both of these classes take an instance of their specific database and use it to persist the todo list. Since each database instance may have its own set of methods to save data, an adapter provides a familiar interface that can be used elsewhere in the code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class MySQLAdapter(DatabaseAdapter):

def __init__(self, db):
self.db = db

def save_list(self, todolist: "TodoList"): ...


class SQLiteAdapter(DatabaseAdapter):

def __init__(self, db):
self.db = db

def save_list(self, todolist: "TodoList"): ...

Strategy Pattern

Next, we’ll create strategies to render the todo list. We’ll start by creating a protocol called RenderingStratgy with a single method called render which returns a string representation of the todo list.

1
2
3
class RenderingStrategy(Protocol):

def render(self, todolist: "TodoList") -> str: ...

We’ll add a concrete strategy called TableRenderingStrategy which displays the tasks and subtasks in tabular format.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class TableRenderingStrategy(RenderingStrategy):

def render(self, todolist: "TodoList") -> str:
headers = ["Title", "Status"]
tasks_and_subtasks = []

for task in todolist.tasks:
tasks_and_subtasks.append([task.title, task.is_complete()])

for subtask in task.subtasks:
tasks_and_subtasks.append(
["-> " + subtask.title, subtask.is_complete()]
)

return tabulate(tasks_and_subtasks, headers=headers)

Proxy Pattern

To create the proxy pattern, we’ll create the protocol, TodoListProtocol, for both the todo list and the proxy. Let’s start with the protocol which defines the methods that are common to both the todo list and the proxy. As we can see, there’s methods to mark the list as complete, to search for tasks, to render the list, and so on.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class TodoListProtocol(Protocol):
@abc.abstractmethod
def complete(self, *args, **kwargs): ...

@abc.abstractmethod
def search(self, *args, **kwargs) -> list[Task]: ...

@abc.abstractmethod
def add(self, *args, **kwargs): ...

@abc.abstractmethod
def save(self, *args, **kwargs): ...

@abc.abstractmethod
def render(self, *args, **kwargs) -> str: ...

Next we’ll add the implementation for the TodoList which implemenets this protocol.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
@dc.dataclass(kw_only=True)
class TodoList(TodoListProtocol, Observable):
id: uuid.UUID = dc.field(default_factory=uuid.uuid4)
title: str
tasks: list[Task] = dc.field(default_factory=list)
owner: User
collaborators: set[User] = dc.field(default_factory=list)

def complete(self, *args, **kwargs):
for task in self.tasks:
task.complete()

def search(self, title: str, *args, **kwargs) -> list[Task]:
return [task for task in self.tasks if title.lower() in task.title.lower()]

def add(self, task: Task, *args, **kwargs):
self.tasks.append(task)
self.notify()

def save(self, adapter: DatabaseAdapter, *args, **kwargs):
adapter.save_list(todolist=self)

def render(self, strategy: RenderingStrategy, *args, **kwargs) -> str:
return strategy.render(self)

@property
def state(self) -> list[Task]:
return copy.copy(self.tasks)

Notice how it implements both TodoListProtocol and Observable. In the add method, we call notify which updates all the observers for this list.

Finally, we’ll add the proxy for TodoList. The proxy authenticates each call to the underlying TodoList by checking whether the user trying to access the list is the owner or a collaborator.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
@dc.dataclass(kw_only=True)
class TodoListProxy(TodoListProtocol):
todolist: TodoList

def complete(self, user: User, *args, **kwargs):
self.raise_if_not_authenticated(user=user)
self.todolist.complete()

def search(self, title: str, user: User, *args, **kwargs) -> list[Task]:
self.raise_if_not_authenticated(user=user)
return self.todolist.search(title=title)

def add(self, task: Task, user: User, *args, **kwargs):
self.raise_if_not_authenticated(user=user)
self.todolist.add(task=task)

def save(self, adapter: DatabaseAdapter, user: User, *args, **kwargs):
self.raise_if_not_authenticated(user=user)
self.todolist.save(adapter=adapter)

def render(self, strategy: RenderingStrategy, user: User, *args, **kwargs) -> str:
self.raise_if_not_authenticated(user=user)
return self.todolist.render(strategy=strategy)

def raise_if_not_authenticated(self, user: User):
if not self.is_authenticated_user(user=user):
raise Exception(f"User {user.email} is not authenticated.")

def is_authenticated_user(self, user: User):
return (self.todolist.owner == user) or (user in self.todolist.collaborators)

Running the Code

Let’s wire the pieces together and run them. We’ll create an adapter, a rendering strategy, and an observer. Since we’ll use dependency injection, we’ll pass these obhects to the appropriate methods.

1
2
3
adapter: DatabaseAdapter = MySQLAdapter(db={})
strategy: RenderingStrategy = TableRenderingStrategy()
observer: Observer = TodoListObserver(user=User(email="jane.doe@gmail.com"))

Next, let’s create the todo list itself.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
todolist = TodoList(
title="...",
owner=User("john.doe@gmail.com"),
collaborators={
User("jane.doe@gmail.com"),
},
tasks=[
Task(
title="Get Groceries",
subtasks=[
SubTask(title="Get Apples"),
SubTask(title="Get Bananas"),
],
),
Task(
title="Do laundry",
completed=False,
),
],
observers=[
observer,
],
)

Notice we’ve added tasks and subtasks to the list. We’ve also added a collaborator and an observer to the list. We’ll finish adding the observer by updating its observable property. This will allow it to fetch the state from the list when it gets updated.

1
observer.observable = todolist

Next, we’ll create a proxy for the list so that we can authenticate the calls.

1
proxy = TodoListProxy(todolist=todolist)

We can now make method calls to see the code in action. Let’s begin by adding a task.

1
2
3
4
proxy.add(
task=Task(title="Walk the dog"),
user=User("john.doe@gmail.com"),
)

This produces the following output in the console. Since John Doe added an item to the list, Jane Doe will be notified of the change.

1
Notify jane.doe@gmail.com about changed state

Next, we’ll render the list.

1
2
3
4
5
6
print(
proxy.render(
strategy=strategy,
user=User("jane.doe@gmail.com"),
)
)

The list is rendered as follows. The subtasks are marked with an arrow to indicate a level of nesting.

1
2
3
4
5
6
7
Title           Status
-------------- --------
Get Groceries False
-> Get Apples False
-> Get Bananas False
Do laundry False
Walk the dog False

Finally, we’ll make an unauthenticated call to see proxy in action.

1
2
3
4
proxy.add(
task=Task(title="Walk the dog"),
user=User("..."),
)

This raises an exception saying that the user is not authenticated.

That’s it. That’s how to create a todo list.

Detecting disguised email addresses in a corpus of text

I’d recently written about an experimental library to detect PII. When discussing it with an acquaintance of mine, I was told that PII can also be disguised. For example, a corpus of text like a review or a comment can contain email address in the form “johndoeatgmaildotcom”. This led me to update the library so that emails like these can also be flagged. In a nutshell, I had to update the regex which was used to find the email.

Example

This is best explained with a few examples. In all of the examples, we begin with a proper email and disguise it one step at a time.

1
2
3
4
5
6
7
8
9
column = Column(name="comment")
detector = ColumnValueRegexDetector()

assert detector.detect(column=column, sample="john.doe@provider.com") == Email()
assert detector.detect(column=column, sample="johndotdoe@provider.com") == Email()
assert detector.detect(column=column, sample="johndotdoeatproviderdotcom") == Email()
assert detector.detect(column=column, sample="john.doe@provider.co.uk") == Email()
assert detector.detect(column=column, sample="johndotdoeatproviderdotcodotuk") == Email()
assert detector.detect(column=column, sample="myemailis:john.doeatproviderdotcom") == Email()

All of these assertions pass and the regex detector is able to flag all of these examples as email.

An experiemental library to detect PII

I recently created an experimental library, detectpii, to detect PII data in relational databases. In this post we’ll take a look at the rationale behind the library and it’s architecture.

Rationale

A common requirement in many software systems is to store PII information. For example, a food ordering system may store the user’s name, address, phone number, and email. This information may also be replicated into the data warehouse. As a matter of good data governance, you may want to restrict access to such information. Many data warehouses allow applying a masking policy that makes it easier to redact such values. However, you’d have to specify which columns to apply this policy to. detectpii makes it easier to identify such tables and columns.

My journey into creating this library began by looking for open-source projects that would help identify such information. After some research, I did find a few projects that do this. The first project is piicatcher. It allows comparing the column names of tables against regular expressions that represent common PII column names like user_name. The second project is CommonRegex which allows comparing column values against regular expression patterns like emails, IP addresses, etc.

detectpii combines these two libraries to allow finding column names and values that may potentially contain PII. Out of the box, the library allows scanning column names and a subset of its values for potentially PII information.

Architecure

At the heart of the library is the PiiDetectionPipeline. A pipeline consists of a Catalog, which represents the database we’d like to scan, and a number of Scanners, which perform the actual scan. The library ships with two scanners - the MetadataScanner and the DataScanner. The first compares column names of the tables in the catalog against known patterns for the ones which store PII information. The second compares the value of each column of the table by retrieving a subset of the rows and comparing them against patterns for PII. The result of the scan is a list of column names that may potentially be PII.

The design of the library is extensible and more scanners can be added. For example, a scanner to use a proprietary machine learning algorithm instead of regular expression match.

Usage

To perform a scan, we create a pipeline and pass it a catalog and a list of scanners. To inititate the scan, we call the scan method on the pipeline to get back a list of PII columns.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from detectpii.catalog import PostgresCatalog
from detectpii.pipeline import PiiDetectionPipeline
from detectpii.scanner import DataScanner, MetadataScanner

# -- Create a catalog to connect to a database / warehouse
pg_catalog = PostgresCatalog(
host="localhost",
user="postgres",
password="my-secret-pw",
database="postgres",
port=5432,
schema="public"
)

# -- Create a pipeline to detect PII in the tables
pipeline = PiiDetectionPipeline(
catalog=pg_catalog,
scanners=[
MetadataScanner(),
DataScanner(percentage=20, times=2,),
]
)

# -- Scan for PII columns.
pii_columns = pipeline.scan()

That’s it. That’s how to use the library to detect PII columns in tables.

A question on algebraic manipulations

In the exercises that follow the chapter on algebraic manipulations, there is a question that pertains to expressing an integer as the sum of two other integers squared. We are then asked to find expressions for the multiples of , namely and . In this post, we’ll take a look at the solution provided by the authors for the first half of the question, , and then come up with a method of our own to solve the second half, .

Question

If is an integer that can be expressed as the sum of two integer squares, show that both and can also be expressed as the sum of two integer squares.

Solution

From the question, since it is the sum of two integer squares. This means . We need to find two integers such that when their squares are summed, we end with . From the solution, these are the numbers (a + b) and (a - b) because when they are squared and summed, we get . This is the result of . Go ahead and expand them to verify the result.

What do we deduce from this? We find that both the expressions contributed an and a . These were added together to get the final result. How do we use this to get ? Notice that we’re squaring the integers. This means that, for example, one of them would have to contribute an and the other would have to contribute a ; similar logic applies for .

This leaves us with two pairs of numbers — and . Let’s square and sum both of these numbers one-by-one.

What integers would we need for ?

Setting up a data catalog with DataHub

In a previous post we’d seen how to create a realtime data platform with Pinot, Trino, Airflow, and Debezium. In this post we’ll see how to setup a data catalog using DataHub. A data catalog, as the name suggests, is an inventory of the data within the organization. Data catalogs make it easy to find the data within the organisation like tables, data sets, reports, etc.

Before we begin

My setup consists of Docker containers required to run DataHub. While DataHub provides features like data lineage, column assertions, and much more, we will look at three of the simpler featuers. One, we’ll look at creating a glossary of the terms that will be used frequently in the organization. Two, we’ll catalog the datasets and views that we saw in the previous post. Three, we’ll create an inventory of dashboards and reports created for various departments within the organisation.

The rationale for this as follows. Imagine a day in the life of a business analyst. Their responsibilities include creating reports and dashboards for various departments. For example, the marketing team may want to see an “orders by day” dashboard so that they can correlate the effects of advertising campaigns with an uptick in the volume of orders. Similarly, the product team may want a report of which features are being used by the users. The requests of both of these teams will be served by the business analyts using the data that’s been brought into the data platform. While they create these reports and dashboards, it’s common for them to receive queries asking where a team member can find a certain report or how to interpret a data point within a report. They may also have to search for tables and data sets to create new reports, acquaint themselves with the vocabulary of the various departments, and so on.

A data catalog makes all of this a more efficient process. In the following sections we’ll see how we can use DataHub to do it. For example, we’ll create the definition of the term “order”, create a list of reports created for the marketing department, and bring in the views and data sets so that they become searchable.

The work of data scientists is similar, too, because they create data sets that can be reused across various models. For example, data sets representing features for various customers can be stored in the platform, made searchable, and used with various models. They, too, benefit from having a data catalog.

Finally, it helps bring people up to speed with the data that is consumed by their department or team. For example, when someone joins the marketing team, pointing them to the data catalog helps them get productive quickly by finding the relevant reports, terminology, etc.

Ingesting data sets and views

To ingest the tables and views, we’ll create a data pipeline which ingets metadata from AWS Glue and writes it to the metadata service. This is done by creating a YAML configuration in DataHub that specifies where to ingest the metadata from, and where to write it. Once this is created, we can schedule it to run periodically so that it stays updated with Glue.

The image above shows how we define a “source” and how we ingest it into a “sink”. Here we’ve specified that we’d like to read from Glue and write it to DataHub’s metadata service.

Once the source and destination are defined, we can set a schedule to run the ingestion. This will bring in the metadata about the data sets and views we’ve created in Glue.

The image above shows that a successful run of the ingestion pipeline brings in the views and data sets. These are then browsable in the UI. Similarly, they are also searchable as shown in the following image.

This makes it possible for the analysts and the data scientists to quickly locate data sets.

Defining the vocabulary

Next, we’ll create the definition of the word “order”. This can be done from the UI as shown below. The definition can be added by editing the documentation.

Once created, this is available under “Glossary” and in search results.

Data products

Finally, we’ll create a data product. This is the catalog of reports and dashboards created for various departments. For example, the image below shows a dashboard created for the marketing team.

Expanding the dashboard allows us to look at the documentation for the report. This could contain the definition of the terms used in the report, as shown on the bottom right, a link to the dashboard in Superset, definitions of data points, report owners, and so on.

That’s it. That’s how a data catalog helps streamline working with data.

Programming Puzzles 2

As I continue working my way through the book on programming puzzles, I came across those involving permutations. In this post I’ll collect puzzles with the same theme, both from the book and from the internet.

All permutations

The first puzzle is to compute all the permutations of a given array. By extension, it can be used to compute all the permutations of a string, too, if we view it as an array of characters. To do this we’ll implement Heap’s algorithm. The following is its recursive version.

1
2
3
4
5
6
7
8
9
10
11
12
13
def heap(permutations: list[list], A: list, n: int):
if n == 1:
permutations.append(list(A))
else:
heap(permutations, A, n - 1)

for i in range(n - 1):
if n % 2 == 0:
A[i], A[n - 1] = A[n - 1], A[i]
else:
A[0], A[n - 1] = A[n - 1], A[0]

heap(permutations, A, n - 1)

The array permutations is the accumulator which will store all the permutations of the array. The initial arguments to the function would be an empty acuumulator, the list to permute, and the length of the list.

Next permutation

The next puzzle we’ll look at is computing the next permutation of the array in lexicographical order. The following implementation has been taken from the book.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def next_permutation(perm: list[int]) -> list[int]:
inversion_point = len(perm) - 2

while (inversion_point >= 0) and (perm[inversion_point] >= perm[inversion_point + 1]):
inversion_point = inversion_point - 1

if inversion_point == -1:
return []

for i in reversed(range(inversion_point + 1, len(perm))):
if perm[i] > perm[inversion_point]:
perm[inversion_point], perm[i] = perm[i], perm[inversion_point]
break

perm[inversion_point + 1:] = reversed(perm[inversion_point + 1:])

return perm

Previous permutation

A variation of the puzzle is to compute the previous permutation of the array in lexicographical order. The idea is to “reverse” the logic for computing the next permutation. If we look closely, we’ll find that all we’re changing are the comparison operators.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def previous_permutation(perm: list[int]) -> list[int]:
inversion_point = len(perm) - 2

while (inversion_point >= 0) and (perm[inversion_point] <= perm[inversion_point + 1]):
inversion_point = inversion_point - 1

if inversion_point == -1:
return []

for i in reversed(range(inversion_point + 1, len(perm))):
if perm[i] < perm[inversion_point]:
perm[inversion_point], perm[i] = perm[i], perm[inversion_point]
break

perm[inversion_point + 1:] = reversed(perm[inversion_point + 1:])

return perm

kth smallest permutation

The final puzzle we’ll look at is the one where we need to compute the k’th smallest permutation. The solution to this uses the previous_permutation function that we saw above. The idea is to call this function k times on the lexicographically-largest array. Sorting the array in decreasing order results is the largest. This becomes the input to the previous_permutation function.

1
2
3
4
5
6
7
8
9
def kth_smallest_permutation(perm: list[int], k: int) -> list[int]:
# -- Arrange the numbers in decreasing order
# -- thereby creating the lexicographically largest permutation
perm = sorted(perm, reverse=True)

for _ in range(k):
perm = previous_permutation(perm)

return perm

That’s it. These are puzzles involving permutations.

Programming Puzzles 1

I am working my way through a classic book of programming puzzles. As I work through more of these puzzles, I’ll share what I discover to solidify my understanding and help others who are doing the same. If you’ve ever completed puzzles on a site like leetcode, you’ll notice that the sheer volume of puzzles is overwhelming. However, there are patterns to these puzzles, and becoming familiar with them makes it easier to solve them. In this post we’ll take a look at one such pattern - two pointers - and see how it can be used to solve puzzles involving arrays.

Two Pointers

The idea behind two pointers is that there are, as the name suggests, two pointers that traverse the array, with one pointer leading the other. Using these two pointers we update the array and solve the puzzle at hand. As an illustrative example, let us consider the puzzle where we’re given an array of even and odd numbers and we’d like to move all the even numbers to the front of the array.

Even and Odd

1
2
3
4
5
6
7
8
9
10
11
def even_odd(A: list[int]) -> None:
"""Move even numbers to the front of the array."""
write_idx = 0
idx = 0

while idx < len(A):
if A[idx] % 2 == 0:
A[write_idx], A[idx] = A[idx], A[write_idx]
write_idx = write_idx + 1

idx = idx + 1

The two pointers here are idx and write_idx. While idx traverses the array and indicates the current element, write_idx indicates the position where the next even number should be written. Whenever idx points to an even number, it is written at the position indicated by write_idx. With this logic, if all the numbers in the array are even, idx and write_idx point to the same element i.e. the number is swapped with itself and the pointers are moved forward.

We’ll build upon this technique to remove duplicates from the array.

Remove Duplicates

Consider a sorted array containing duplicate numbers. We’d like to keep only one occurrence of each number and overwrite the rest. This can be solved using two pointers as follows.

1
2
3
4
5
6
7
8
9
10
11
12
def remove_duplicates(A: list[int]) -> int:
"""Remove all duplicates in the array."""
write_idx, idx = 1, 1

while idx < len(A):
if A[write_idx - 1] != A[idx]:
A[write_idx] = A[idx]
write_idx = write_idx + 1

idx = idx + 1

return write_idx

In this solution, idx and write_idx start at index 1 instead of 0. The reason is that we’d like to look at the number to the left of write_idx, and starting at index 1 allows us to do that. Notice also how we’re writing the if condition to check for duplicity in the vicinity of write_idx; the number to the left of write_idx should be different from the one that idx is presently pointing to.

As a varitation, move the duplicates to the end of the array instead of overwriting them.

As another variation, remove a given number from the array by moving it to the end.

With this same pattern, we can now change the puzzle to state that we want at most two instances of the number in the sorted array.

Remove Duplicates Variation

1
2
3
4
5
6
7
8
9
10
def remove_duplicates(A: list[int]) -> int:
"""Keep at most two instances of the number."""
write_idx = 2

for idx in range(2, len(A)):
if A[write_idx - 2] != A[idx]:
A[write_idx] = A[idx]
write_idx = write_idx + 1

return write_idx

Akin to the previous puzzle, we look for duplicates in the vicinity of write_idx. While in the previous puzzle the if condition checked for one number to the left, in this variation we look at two positions to the left of write_idx to keep at most two instances. The remainder of the logic is the same. As a variation, try keeping at most three instances of the number in the sorted array.

Finally, we’ll use the same pattern to solve the Dutch national flag problem.

Dutch National Flag

In this problem, we sort the array by dividing it into three distinct regions. The first region contains elements less than the pivot, the second region contains elements equal to the pivot, and the third region contains elements greater than the pivot.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
def dutch_national_flag(A: list[int], pivot_idx: int) -> None:
"""Divide the array into three distinct regions."""
pivot = A[pivot_idx]
write_idx = 0
idx = 0

# --- Move all elements less than pivot to the front
while idx < len(A):
if A[idx] < pivot:
A[write_idx], A[idx] = A[idx], A[write_idx]
write_idx = write_idx + 1
idx = idx + 1

idx = write_idx

# -- Move all elements equal to the pivot to the middle
while idx < len(A):
if A[idx] == pivot:
A[write_idx], A[idx] = A[idx], A[write_idx]
write_idx = write_idx + 1
idx = idx + 1

# -- All elements greater than pivot have been moved to the end.

This problem combines everything we’ve seen so far about two pointers and divides the array into three distinct regions. As we compute the first two regions, the third region is computed as a side-effect.

We can now solve a variation of the Dutch national flag partitioning problem by accepting a list of pivot elements. In this variation all the numbers within the list of pivots appear together i.e. all the elements equal to the first pivot element appear first, equal to second pivot element appear second, and so on.

1
2
3
4
5
6
7
8
9
10
11
12
def dutch_national_flag(A: list[int], pivots: list[int]) -> None:
"""This is a variation in which all elements with same key appear together."""
write_idx = 0

for pivot in pivots:
idx = write_idx

while idx < len(A):
if A[idx] == pivot:
A[write_idx], A[idx] = A[idx], A[write_idx]
write_idx = write_idx + 1
idx = idx + 1

That’s it, that’s how we can solve puzzles involving two pointers and arrays.

Creating a realtime data platform with Pinot, Airflow, Trino, and Debezium

I’d previously written about creating a realtime data warehouse with Apache Doris and Debezium. In this post we’ll see how to create a realtime data platform with Pinot, Trino, Airflow, Debezium, and Superset. In a nutshell, the idea is to bring together data from various sources into Pinot using Debezium, transform it using Airflow, use Trino for query federation, and use Superset to create reports.

Before We Begin

My setup consists of Docker containers for running Pinot, Airflow, Debezium, and Trino. Like in the post on creating a warehouse with Doris, we’ll create a person table in Postgres and replicate it into Kafka. We’ll then ingest it into Pinot using its integrated Kafka consumer. Once that’s done, we’ll use Airflow to transform the data to create a view that makes it easier to work with it. Finally, we can use Superset to create reports. The intent of this post is to create a complete data platform that makes it possible to derive insights from data with minimal latency. The overall architecture looks like the following.

Getting Started

We’ll begin by creating a schema for the person table in Pinot. This will then be used to create a realtime table. Since we want to use Pinot’s upsert capability to maintain the latest record of each row, we’ll ensure that we define the primary key correctly in the schema. In the case of the person table, it is the combination of the id and the customer_id field. The schema looks as follows.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
{
"schemaName": "person",
"dimensionFieldSpecs": [
{
"name": "id",
"dataType": "LONG"

},
{
"name": "customer_id",
"dataType": "LONG"
},
{
"name": "source",
"dataType": "JSON"
},
{
"name": "op",
"dataType": "STRING"
}
] ,
"dateTimeFieldSpecs": [{
"name": "ts_ms",
"dataType": "LONG",
"format" : "1:MILLISECONDS:EPOCH",
"granularity": "1:MILLISECONDS"
}],
"primaryKeyColumns": [
"id",
"customer_id"
],
"metricFieldSpecs": []
}

We’ll use the schema to create the realtime table in Pinot. Using ingestionConfig we’ll extract fields out of the Debezium payload and into the columns defined above. This is defined below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
"ingestionConfig":{
"transformConfigs":[
{
"columnName": "id",
"transformFunction": "jsonPath(payload, '$.after.id')"
},
{
"columnName": "customer_id",
"transformFunction": "jsonPath(payload, '$.after.customer_id')"
},
{
"columnName": "source",
"transformFunction": "jsonPath(payload, '$.after')"
},
{
"columnName": "op",
"transformFunction": "jsonPath(payload, '$.op')"
}
]
}

Next we’ll create a table in Postgres to store the entries. The SQL query is given below.

1
2
3
4
5
6
CREATE TABLE person (
id BIGSERIAL NOT NULL,
customer_id BIGINT NOT NULL,
name TEXT NOT NULL,
PRIMARY KEY (id, customer_id)
);

Next we’ll create a Debezium source connector to stream change data into Kafka.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
{
"name": "person",
"config": {
"connector.class": "io.debezium.connector.postgresql.PostgresConnector",
"database.hostname": "db",
"database.user": "postgres",
"database.password": "my-secret-pw",
"database.dbname": "postgres",
"database.server.name": "postgres",
"table.include.list": ".*\\.person",
"plugin.name": "pgoutput",
"publication.autocreate.mode": "filtered",
"time.precision.mode": "connect",
"tombstones.on.delete": "false",
"snapshot.mode": "initial",
"heartbeat.interval.ms": "1000",
"transforms": "route",
"transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",
"transforms.route.regex": "([^.]+)\\.([^.]+)\\.([^.]+)",
"transforms.route.replacement": "$3",
"event.processing.failure.handling.mode": "skip",
"producer.override.compression.type": "snappy",
"topic.prefix": "user_service"
}
}

Finally, we’ll use curl to send these configs to their appropriate endpoints, beginning with Debezium.

1
curl -H "Content-Type: application/json" -XPOST -d @debezium/person.json localhost:8083/connectors | jq .

To create a table in Pinot we’ll first create the schema followed by the table. The curl command is given below.

1
curl -F schemaName=@tables/001-person/person_schema.json localhost:9000/schemas | jq .

The command to create the table is given below.

1
curl -XPOST -H 'Content-Type: application/json' -d @tables/001-person/person_table.json localhost:9000/tables | jq .

With these steps done, the change data from Debezium will be ingested into Pinot. We can view this using Pinot’s query console.

This is where we begin to integrate Airflow and Trino. While the data has been ingested into Pinot, we’ll use Trino for querying. There are two main reasons for this. One, this allows usto federate queries across multiple sources. Two, Pinot’s SQL capabilities are limited. For example, there is no support, as of writing, for creating views. To circumvent these we’ll create a Hive connector in Trino and use it to query Pinot.

The first step is to connect Trino and Pinot. We’ll do this using the Pinot connector.

1
2
3
4
CREATE CATALOG pinot USING pinot 
WITH (
"pinot.controller-urls" = 'pinot-controller:9000'
);

Next we’ll create the Hive connector. This will allow us to create views, and more importantly materialized views which act as intermediate datasets or final reports, which can be queried by Superset. I’m using AWS Glue instead of Hive so you’ll have to change the configuration accordingly.

1
2
3
4
5
6
7
8
9
10
11
12
CREATE CATALOG hive USING hive
WITH (
"hive.metastore" = 'glue',
"hive.recursive-directories" = 'true',
"hive.storage-format" = 'PARQUET',
"hive.insert-existing-partitions-behavior" = 'APPEND',
"fs.native-s3.enabled" = 'true',
"s3.endpoint" = 'https://s3.us-east-1.amazonaws.com',
"s3.region" = 'us-east-1',
"s3.aws-access-key" = '...',
"s3.aws-secret-key" = '...'
);

We’ll create a schema to store the views and point it to an S3 bucket.

1
2
3
4
CREATE SCHEMA hive.views
WITH (
"location" = 's3://your-bucket-name-here/views/'
);

We can then create a view on top of the Pinot table using Hive.

1
2
3
4
5
6
CREATE OR REPLACE VIEW hive.views.person AS
SELECT id,
customer_id,
JSON_EXTRACT_SCALAR(source, '$.name') AS name,
op
FROM pinot.default.person;

Finally, we’ll query the view.

1
2
3
4
5
6
7
trino> SELECT * FROM hive.views.person;
id | customer_id | name | op
----+-------------+-------+----
1 | 1 | Fasih | r
2 | 2 | Alice | r
3 | 3 | Bob | r
(3 rows)

While this helps us ingest and query the data, we’ll take this a step further and use Airflow to create the views instead. This allows us to create views which are time-constrained. For example, if we have an order table which contains all the orders placed by the customers, using Airflow allows to create views which are limited to, say, the last one year by adding a WHERE clause.

We’ll use the TrinoOperator that ships with Airflow and use it to create the view. To do this, we’ll create an sql folder under the dags folder and place our query there. We’ll then create the DAG and operator as follows.

1
2
3
4
5
6
7
8
9
10
11
12
13
dag = DAG(
dag_id="create_views",
catchup=False,
schedule="@daily",
start_date=pendulum.now("GMT")
)

person = TrinoOperator(
task_id="person",
trino_conn_id="trino",
sql="sql/views/person.sql",
dag=dag
)

Workflow

The kind of workflow this setup enables is the one where the data engineering team is responsible for ingesting the data into Pinot and creating the base views on top of it. The business intelligence / analytics engineering, and data science teams can then use Airflow to create datasets that they need. These can be created as materialized views to speed up reporting or training of machine learning models. Another advantage of this setup is that bringing in older data, say, of the last two years instead of one, is a matter of changing the query of the base view. This avoids complicated backfills and speeds things up significantly.

As an aside, it is possible to use DBT instead of TrinoOperator. It can be used in conjunction with TrinoOperator, too. However, I preferred using the in-built operator to keep the stack simpler.

Cost

Before we conclude, we’ll quickly go over how to keep the cost of the Pinot cluster low while using this setup. In the official documentation it says that data can be seperated by age; older data can be stored in HDDs while the newer data can be stored in SSDs. This allows lowering the cost of the cluster.

An alternative approach is to keep all the data in HDDs and load subsets into Hive for querying. This also allows changing the date range of the views by simply updating the queries. In essence, Pinot becomes the permanent storage for data while Trino and Hive become the intermediate query and storage layer.

That’s it. That’s how we can create a realtime data platform using Pinot, Trino, Debezium, and Airflow.

A note on exponents

In the chapter on exponents the authors mention that if a base is raised to both a power and a root, we should calculate the root first and then the power. This works perfectly well. However, reversing the order produces correct results, too. In this post we’ll see why that works using the properties of exponents.

Let’s say we have a base that is raised to power and root . We could write this as . From the properties of exponents, we could rewrite this as . Alternatively, it can be written as . Since multiplication is commutative, we can switch the order of operations and rewrite it as . This means we can calculate the power first and then take the root.

Let’s take a look at a numerical example. Consider . We know that the answer should be equal to . If we were to calculate the root first, we get . If we were to calculate the power first and then take the root, we’d get . As we can see, we get the same result.

Therefore, we can apply the operations in any order.

Factoring Quadratics

While reading through the chapter on solving quadratics of a math textbook, I came across a paragraph where the authors mention that factoring quadratics takes a bit of ingenuity, experience, and dumb luck. I spent some time creating an alternative method from the one mentioned in the book which makes factoring quadratics a matter of following a simple set of steps, and removes the element of luck from it. In this post I will review some of the concepts mentioned in the book, and solve through one of the more difficult problems to illustrate my method.

Concepts

Let’s begin by looking at the quadratic . This can be factored as . Multiplying the terms gives us . Comparing this to the coefficients of the the original quadratic gives us , and . For a simple quadratic, we can guess that and . For quadratics where it is not so obvious, we need hints to guide us along the way.

We can get insights into the signs of and by looking at the product and the sum of coefficients of the quadratic. If the product is positive, then they have the same signs. If the product is negative, they have different signs. This makes intuitive sense. In case the product is positive, the sum tells us whether they are both positive or both negative.

We will use this again when we look at the alternative method to factor a quadratic. First, however, we will look at a different type of quadratic where the coefficient of is not 1.

Consider the quadratic . It can be factored as . Multiplying the terms gives us . As in the previously mentioned quadratic, we can get the product and the sum terms by comparing the quadratic with the general form we just derived. Here , and . A small nuance to keep in mind is that if the coefficient of were negative, we’d factor out a to make it positive.

Now we move on to the problem and the method. You’ll find that although the method is tedious, it will remove the element of luck from the process.

Method

Consider the quadratic . Here, , , and . From the guiding hints mentioned in the previous section, we notice that the signs of and are the same; they are either both positive or both negative. We begin the method be defining a function which returns a set of pairs of all the factors of . Therefore, we can write and as follows.

We will now get to the tedious part. We will create combinations of . We pick the first pair of factors of and match it with the first pair of factors of . For the sake of brevity, we will only some of the examples to illustrate the process.

7 7 2 66 476
7 7 -2 -66 -476
7 7 66 2 476
7 7 -66 -2 -476

Notice how we swap the values of and in the columns above. This is because we’re trying to find the product and its value will change depending on what the value of and are. Similarly, we’ll have to swap the values of and ; this is not apparent in the table above because both the values are . We will have to continue on with the table since we we are yet to find a combination of numbers which equals . The table is quite large so we’ll skip the rest of the entries for the sake of brevity and look at the one which gives us the value we’re looking for.

49 1 -22 -6 -316

We can now write our factors as . This gives us or .

That’s it. That’s how we can factor quadratics by creating combinations of the factors of their coefficients.

Scaling Python Microservices Part 3

In a previous blog post we’d seen how to use OpenTelemetry and Parca to instrument two microservcies. Imagine that our architecture has grown and we now have many microservices. For example, there is a microservice that is used to send emails, another which keeps track of user profile information, etc. We’d previously hardcoded the HTTP address of the second microservice to make a call from the first microservice. We could have, in a production environment, added a DNS entry which points to the load balancer and used that instead. However, when there are many microservcies, it becomes cumbersome to add these entries. Furthermore, any new microservice which depends on another microservice now needs to have the address as a part of its configuration. Maintaining a single repository, which can be used to find the microservices and their addresses, becomes difficult to maintain. An easier way to find services is to use service discovery - a dynamic way for one service to find another. In this post we’ll modify the previous architecture and add service discovery using Zookeeper.

Before We Begin

In a nutshell, we’ll use Zookeeper for service registration and discovery. We’ll modify our create_app factory function to make one more function call which registers the service as it starts. The function call creates an ephemeral node in Zookeeper at a specified path and stores the host and port. Any service which needs to find another service looks for it on the same path. We’ll create a small library for all of this which will make things easier.

Getting Started

We’ll begin by creating a simple attr class to represent a service.

1
2
3
4
@define(frozen=True)
class Service:
host: str
port: int

We’ll be using the kazoo Python library to interact with Zookeeper. The next step is to create a private variable which will be used to store the Zookeeper client.

1
_zk: KazooClient | None = None

Next we’ll add the function which will be called as a part of the create_app factory function.

1
2
3
def init_zookeeper_and_register():
_init_zookeeper()
_register_service()

In this function we’ll first initialize the connection to Zookeeper and then register our service. We’ll see both of these functions next, starting with the one to init Zookeeper.

1
2
3
4
5
6
7
def _init_zookeeper():
global _zk

if not _zk:
_zk = KazooClient(hosts='127.0.0.1:2181')
_zk.start(timeout=5)
_zk.add_listener(_state_change_listener)

The _zk variable is meant to be a singleton. I was unable to find whether this is thread-safe or not but for the sake of this post we’ll assume it is. The start method creates a connection to Zookeeper synchronously and raises an error if no connection could be made in timeout seconds. We also add a listener to respond to changes in the state of a Zookeeper connection. This enables us to respond to scenarios where the connection drops momentarily. Since we’ll be creating ephemeral nodes in Zookeeper, they’ll be removed in the case of a session loss and would need to be recreated. In the listener we recreate the node upon a successful reconnection.

Next we’ll look at the function to register the service.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def _register_service():
global _zk

service = os.environ.get("SERVICE")
host = socket.getfqdn()
port = os.environ.get("PORT")

assert service
assert host
assert port

identifier = str(uuid4())
path = f"/providers/{service}/{identifier}"
data = {"host": host, "port": int(port)}
data_bytes = json.dumps(data).encode("utf-8")

_zk.create(path, data_bytes, ephemeral=True, makepath=True)

We get the name of the service and the port it is running on as environment variables. The host is retrieved as the fully-qualified domain name of the machine we’re on. Although the example is running on my local machine, it may work on a cloud provider like AWS. We then create a UUID identifier for the service, and a path on which the service will be registered. The information stored on the path is a JSON containing the host and the port of the service. Finally, we create an ephemeral node on the path and store the host and port.

Next we’ll look at the function which handles changes in connection state.

1
2
3
def _state_change_listener(state):
if state == KazooState.CONNECTED:
_register_service()

We simply re-register the service upon reconnection.

Finally, we’ll look at the function which retrieves an instance of the service from Zookeeper.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def get_service_from_zookeeper(service: str) -> Service | None:
global _zk
assert _zk

path = f"/providers/{service}"
children = _zk.get_children(path)

if not children:
return None

idx = random.randint(0, len(children) - 1)

child = children[idx]
config, _ = _zk.get(f"/providers/{service}/{child}")
config = config.decode("utf-8")
config = json.loads(config)

return Service(**config)

To get a service we get all the children at the path /providers/SERVICE_NAME. This returns a list of UUIDs, each of which represents an instance of the service. We randomly pick one of these instances and fetch the information associated with it. What we get back is a two-tuple containing the host and port, and an instance of ZStat which we can ignore. We decode and parse the returned information to get an instance of dict. This is then used to return an instance of Service. We can then use this information to make a call to the returned service.

This is all we need to create a small set of utility functions to register and discover services. All we need to do to register the service as a part of the Flask application process is to add a function call in the create_app factory function.

1
2
3
4
5
6
7
8
def create_app() -> Flask:
...

# -- Initialize Zookeeper and register the service.
init_zookeeper_and_register()

return app

Finally, we’ll retrieve the information about the second service in the first service right before we make the call.

1
2
3
4
def make_request() -> dict:
service = get_service_from_zookeeper(service="second")
url = f"http://{service.host}:{service.port}"
...

As an aside, the service will automatically be deregistered once it stops running. This is because we created an ephemeral node in Zookeeper and it only persists as long as the session that created it is alive. When the service stops, the session is disconnected, and the node is removed from Zookeeper.

Rationale

The rationale behind registering and discovering services from Zookeeper is to make it easy to create new services and to find the ones that we need. It’s even more convenient when there is a shared library which contains the code that we saw above. For the sake of simplicity, we’ll assume all our services are written in Python and there is a single library that we need. The library could also contain an enum that represents all the services that are registered with Zookeeper. For example, to make a call to an email microservice, we could have code that looks like the following.

1
2
email_service = Service.EMAIL_SERVICE.value
service = get_service_from_zookeeper(service=email_service)

This, in my opinion, is much simpler than adding a DNS entry. The benefits add up over time and result in code that is both readable and maintainable.

That’s it. That’s how we can register and retrieve services from Zookeeper. Code is available on Github.

Scaling Python Microservices Part 2

In one of the previous posts we saw how we can scale a Python microservice and allow it to connect, theoretically, to an infinite number of databases. The way we did this is by fetching the database connection information at runtime from another microservice using the unique identifier of the customer. This allowed us to scale horizontally to some extent. However, there is still the limitation that the data of the customer may be so large that it would exceed the limit of the database when it is scaled vertically. In this post we’ll look at how to extend the architecture we saw previously and shard the data across servers. We’ll continue to use relational databases and see how we can shard the data using Postgres PARTITION BY.

Before We Begin

The gist of scaling by sharding is to split the table into multiple partitions and let each of these be hosted on a separate host. For the purpose of this post we’ll use a simple setup that consists of four partitions that are spread over two hosts. We’ll use Postgres’ Foreign Data Wrapper (FDW) to connect one instance of Postgres to another instance of Postgres. We’ll store partitions in both these hosts, and create a table which uses these partitions. Querying this table would allow us to query data from all the partitions.

Getting Started

My setup has two instances of Postgres, both of which will host partitions. One of them will also contain the base table which will use these partitions. We’ll begin by logging into the first instance and creating the FDW extension which ships natively with Postgres.

1
CREATE EXTENSION postgres_fdw;

Next, we’ll tell the first instance that there is a second instance of Postgres that we can connect to. Since both of these instances are running as Docker containers, I will use the hostname in the SQL query.

1
CREATE SERVER postgres_5 FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host 'postgres_5', dbname 'postgres');

Next, we’ll create a user mapping. This allows the user of the first instance to log into the second instance as one of its users. We’re simply mapping the postgres user of the first instance to the postgres user of the second instance.

1
CREATE USER MAPPING FOR postgres SERVER postgres_5 OPTIONS (user 'postgres', password 'my-secret-pw');

Next, we’ll create the base table. There are a couple of things to notice. First, we use the PARTITION BY clause to specify that the table is partitioned. Second, there is no primary key on this table. Specifying a primary key prevents us from using foreign tables so we’ll omit them.

1
2
3
4
5
6
7
CREATE TABLE person (
id BIGSERIAL NOT NULL,
quarter BIGINT NOT NULL,
name TEXT NOT NULL,
address TEXT NOT NULL,
customer_id TEXT NOT NULL
) PARTITION BY HASH (quarter);

Next, we’ll create two partitions that reside on the first instance. We could, if the data were large enough, host each of these on separate instances. For the purpose of this post, we’ll host them on the same instance.

1
2
CREATE TABLE person_0 PARTITION OF person FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE TABLE person_1 PARTITION OF person FOR VALUES WITH (MODULUS 4, REMAINDER 1);

We’ll now switch to the second instance and create two tables which will host the remaining two partitions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
CREATE TABLE person_2 (
id BIGSERIAL NOT NULL,
quarter BIGINT NOT NULL,
name TEXT NOT NULL,
address TEXT NOT NULL,
customer_id TEXT NOT NULL
);


CREATE TABLE person_3 (
id BIGSERIAL NOT NULL,
quarter BIGINT NOT NULL,
name TEXT NOT NULL,
address TEXT NOT NULL,
customer_id TEXT NOT NULL
);

Once this is done, we’ll go back to the first instance and designate these tables as partitions of the base table.

1
2
CREATE FOREIGN TABLE person_2 PARTITION OF person FOR VALUES WITH (MODULUS 4, REMAINDER 2) SERVER postgres_5;
CREATE FOREIGN TABLE person_3 PARTITION OF person FOR VALUES WITH (MODULUS 4, REMAINDER 3) SERVER postgres_5;

That’s it. This is all we need to partition data across multiple Postgres hosts. We’ll now run a benchmark to insert data into the table and its partitions.

1
ab -p /dev/null -T "Content-Type: application/json" -n 5000 -c 100 -H "X-Customer-ID: 4" http://localhost:5000/person

Once the benchmark is complete, we can query the base table to see that we have 5000 rows.

1
2
3
4
SELECT COUNT(*) FROM person;

count
5000

What I like about this approach is that it is built using functionality that is native to Postgres - FDW, partitions, and external tables. Additionally, the sharding is transparent to the application; it sees a single Postgres instance.

Finito.